The equalities of ordinary least-squares estimators and best linear unbiased estimators for the restricted linear model
نویسندگان
چکیده
We investigate in this paper a variety of equalities for the ordinary least-squares estimators and the best linear unbiased estimators under the general linear (Gauss-Markov) model {y, Xβ, σΣ} and the restrained model {y, Xβ |Aβ = b, σΣ}.
منابع مشابه
Decomposition of approaches of a general linear model with fixed parameters
The well-known ordinary least-squares estimators (OLSEs) and the best linear unbiased estimators (BLUEs) under linear regression models can be represented by certain closed-form formulas composed by the given matrices and their generalized inverses in the models. This paper provides a general algebraic approach to relationships between OLSEs and BLUEs of the whole and partial mean parameter vec...
متن کاملOn equality and proportionality of ordinary least squares, weighted least squares and best linear unbiased estimators in the general linear model
Equality and proportionality of the ordinary least-squares estimator (OLSE), the weighted least-squares estimator (WLSE), and the best linear unbiased estimator (BLUE) for Xb in the general linear (Gauss–Markov) model M 1⁄4 fy;Xb; sRg are investigated through the matrix rank method. r 2006 Elsevier B.V. All rights reserved. MSC: Primary 62J05; 62H12; 15A24
متن کاملClassic and Bayes Shrinkage Estimation in Rayleigh Distribution Using a Point Guess Based on Censored Data
Introduction In classical methods of statistics, the parameter of interest is estimated based on a random sample using natural estimators such as maximum likelihood or unbiased estimators (sample information). In practice, the researcher has a prior information about the parameter in the form of a point guess value. Information in the guess value is called as nonsample information. Thomp...
متن کاملConditionally Unbiased Bounded Influence Estimation in General Regression
Iu this paper we study robust estimation in general models for the dependence of a response y on an explanatory vector z. We extend previous work on bounded influence estimators in linear regression. Second we construct optimal bounded influence estimators for generalized linear models. We consider the class of estimators defined by an estimating equation with a conditionally unbiased score flw...
متن کاملDifferenced-Based Double Shrinking in Partial Linear Models
Partial linear model is very flexible when the relation between the covariates and responses, either parametric and nonparametric. However, estimation of the regression coefficients is challenging since one must also estimate the nonparametric component simultaneously. As a remedy, the differencing approach, to eliminate the nonparametric component and estimate the regression coefficients, can ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006